Roman Smirnov

Professor


Email: roman.smirnov@dal.ca
Phone: (902) 494-3265
Mailing Address: 
Department of Mathematics & Statistics
Dalhousie University
6297 Castine Way - PO Box 15000
Halifax, Nova Scotia, Canada
B3H 4R2
 
Research Topics:
  • Mathematical physics
  • Invariant theory
  • Separation of variables
  • Killing tensors
  • Orthogonal coordinate webs
  • Hamiltonian mechanics
  • Completely integrable systems
  • Applied Mathematics


Office Number:
Chase Room 324

Education:  PhD -Queen's University (1996) 
  BSc -Kyiv National University(1992)

Scholarly Interests: Differential Geometry, Invariant Theory, Hamilton - Jacobi Theory of Separation of Variables and Mathematical Economics.

Selected Publications:

  • (with K. Wang) In search of a new economic model determined by logistic growth, European J. Appl. Math., to appear, 2019

  • (with C. M. Cochran and R. G. McLenaghan) Equivalence problem for the orthogonal separable webs in 3-dimensional hyperbolic space, J. Math. Phys.  58 , 063513 (2017)

  • Invariant theory of Killing tensors, CMS Notes 43(5), 13-14 (2011)

  • (with C. M. Cochran and  R. G. McLenaghan) Equivalence problem for the orthogonal webs on the 3-sphere, J. Math. Phys, 52,  053509 (2011)

  • (with J. H. Horwood and R. G. McLenaghan) Hamilton–Jacobi theory   in three-dimensional Minkowski space via Cartan geometry, J. Math. Phys, 50, 053507 (2009)

  • (with J. Praught) Andrew Lenard: a mystery unraveled. SIGMA       Symmetry Integrability Geom. Methods Appl. 1 (2005), Paper 005, 7 pp.

  • (with J. T. Horwood and R. G. McLenaghan) Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space,  Comm. Math. Physics 259(3) (2005), 679--709.

  • (with R. G. McLenaghan and R. Milson) Killing tensors as irreducible representations of the general linear group, C.R. Acad. Sci. Paris, Ser I. 339 (2004), 621-624

  • (with J. Yue) Covariants, joint invariants and the equivalence problem in the invariant theory of Killing tensors defined in pseudo-Riemannian manifolds of constant curvature, J. Math. Phys. 45 (2004), 4141-4163

  • (with R. G. McLenaghan and D. The) An extension of the classical theory  of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics, J. Math. Phys., 45(3) (2004), 1079-1120

        

Personal site: